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ABSTRACT

A mammogram is a screening of the human breast using
low energy X-rays. Radiologist observe these screenings for
the detection of visual indicators of breast cancer. These
visual indications are described in a mammography report.
Reports are often unstructured and therefore not machine
readable. Information therefore has to be retrieved manu-
ally, which may be time consuming.

The main purpose of this paper is to research whether a
machine can be trained to classify mammography reports.
For this experiment a data set containing 17,000 Dutch re-
ports is used. Reports are annotated and contain in some
cases multiple labels. These reports originate from the Dutch
population screening on breast cancer, IBOB, and were pro-
vided by A.J.T.Wanders.

Data is represented through the bag-of-words model. From
the data different sizes of N-gram features are extracted.
Feature selection is done by both the frequency of a term
and two tf-idf approaches. As a classifier Support Vector
Machines are used.

The final results of the experiments are a micro averaged
Fl-measure of 0.896 on the single label data, and a F1-
measure of 0.854 on the multi label data. These results
suggest that a machine can be trained to classify these re-
ports. Furthermore the data suggest that an increase in
training data may also improve the performance.

1. INTRODUCTION

A radiologist is a medical doctor that is specialized in di-
agnosing and treating diseases using medical imaging tech-
niques. Some examples of such techniques are X-rays, Mag-
netic Resonance Imaging (MRI) and ultrasound. These tech-
niques can be used for the detection of several types of dis-
eases. A common example of this is breast cancer. Typically
for the detection of this disease a mammography is used. A
mammography uses low energy X-rays to screen the human
breast. The output of the mammography (a mammogram)
can then be observed by a radiologist for the detection of
cancer.

The task of a radiologist is to scan the mammogram for
visual indicators that suggest breast cancer may be present.
In the report, the observations made during this session are
recorded. Typically a report contains the location, type,
density and size of an indication. There are several different
methods to record these observations. Digital recording has
become more important through the use of the Electronic
Health Record (EHR). Depending on the hospital and the
radiologist, the findings can be recorded using a keyboard,

or through voice recognition software.

Currently when an observation is made by a radiologist, it
is recorded and saved as unstructured data. The main con-
sequence of unstructured reporting is that it is not machine
readable. Therefore, if information needs to be retrieved
from these reports, it has to be done manually, which can
be time consuming. Another consequence of unstructured
reporting is that observations can be described in several
ways. This may in return make it difficult for colleagues to
interpret each others transcripts.

One approach to apply structure to these reports is through
the use of a protocol. This protocol would hold a set of rules
that can structure the way observations are stored by radi-
ologists. Such protocol would however only be effective if it
were to be used by a large part of the hospitals in the world,
which may make implementation challenging.

In this paper we explore the possibility of having a ma-
chine classify these radiology reports. Primarily we are in-
terested in how well a machine can be trained to classify
the observations made by radiologist. This research is an
initiative by A.J.T.Wanders, who has been a screening ra-
diologist since 1989 [1]. He provided a data set containing
17,000 Dutch mammography reports. These reports origi-
nate from the Dutch population screening on breast cancer,
IBOB. Each report contains one or more annotations. In
total there are 15 different annotations.

In the remainder of the paper, the following content will
be discussed. In Section 2, similar studies and common ap-
proaches will be discussed. In Section 3 the data set and the
methodology will be explained. In Section 4 the results of
the experiments will be shown. In Section 5 the results are
analyzed and explained. In Section 6 and 7 the conclusion
and future work will be discussed.

2. LITERATURE REVIEW

There has already been a significant amount of research
done on the classification of radiology reports by machines.
One study focused on reports concerning limb fractures [2].
In this study a hundred unstructured text reports were col-
lected from a hospital which were then annotated by experts.
Reports could either be annotated as normal (no fracture
has been identified) or abnormal (a fracture has been iden-
tified in the radiography). Then features were selected for
the classification task. For this experiment both standard
NLP and domain specific features were collected. Standard
NLP features are typically used in almost any domain, such
as tokens, token stems, punctuation, bigram and trigrams.
They also made use of the SNOMED CT. This is an En-



glish terminology service for clinical health information. It
may be used to detect clinical terms and to retrieve it syn-
onyms. Features retrieved were then used by a Support
Vector Machine (SVM) and a Naive Bayes Classifier. The
SVM reached the highest performance with a Fl-measure
of 92.31%. The paper concludes that while these results
may look promising, further work needs to be conducted to
reach the performance of an clinical expert (F1l-measure of
98.03%).

The previous study shows that it is possible to classify
radiology reports by machines. There are several differences
however with the experiment described in this paper. First
off all, the study is concerned with a binary classification
task, where in paper there are fifteen different classes. Sec-
ondly, the dataset is in English, whereas the dataset in this
study is in Dutch. The challenge for any Dutch dataset on
clinical information is the absence of a terminology service
such as SNOWMED CT. Finally the dataset is concerned
with reports describing a limb fracture, whereas the dataset
in this study is concerned with a mammography.

Another study that focused on mammography experimented
with the classification of breast tissue composition [4]. Breast
tissue composition is an important component in the eval-
uation of the breast, however it is rarely reported in coded
form, making it challenging for machines to read. Breast
tissue composition can be divided into four different cate-
gories using the Breast Imaging Reporting and Data Sys-
tem (BI-RAD). There is one extra categories for cases that
are ‘unspecified’. For this experiment a relatively large set
of reports (> 150,000) were used to construct a set of tex-
tual patterns. Using those textual patterns, the classifier
correctly predicted 99.8% of the 500 reports.

While the reports in this study were of the same type as
the one in ours, there are still some differences. First of all,
the dataset contains five classes which still is not compara-
ble to the fifteen in our dataset. Secondly the size of the
dataset is significantly bigger then the dataset used in this
study. Lastly, every instances in the dataset is assigned to
exclusively one class whereas in our dataset there can be
instances with two classes.

Furthermore there are some other examples of studies that
have researched the classification of radiology reports. One
study was concerned with an annotated Spanish dataset of
130,000 reports. Reports either contained pathological find-
ings, or not. [3]. For classification they make use of Radlex,
an radiology lexicon, and other NLP techniques. Their final
performance was an Flmeasure of 0.72

The experiment described in this study is known as a doc-
ument classification task concerning text data. There are
multiple classification techniques suited for this problem.
One of the simpler techniques is term frequency-inverse doc-
ument frequency (Tf-idf) [6]. This scoring mechanism uses
the frequency of a term in a document and its distribution
over the entire dataset to calculate a score. Tf-idf and vari-
ations on it have been successfully used in the past for text
classification [7][8]

Another well-known approach to the classification of text
is the bag of words model. In this technique, documents are
converted to vectors, that can then be fed to classifiers. One
classifier that performs particularity well with the bag-of-
words model and text is the Support Vector Machine(SVM)
[9]. SVMs excel at this task because they have a high dimen-
sional input space meaning and because text classification

tasks are often lineary seperable [10].

One subject that is not specifically mentioned in the pre-
vious studies is the balance of the datasets. As mentioned
in the previous section, the dataset used for this study is im-
balanced. This means that there are some classes that have
a significantly higher frequency than other classes. A wide
range of methods have already been studied to deal with
this issues. One of the more common approaches is that
of under sampling [17]. With undersampling, the amount
of instances of the majority class is reduced to balance the
ratios between classes.

3. METHODOLOGY

In this section the methods used in the experiments are
discussed. First the data set is described. Secondly, several
approaches through which data is selected will be discussed.
The model through which this data is applied is explained.
Finally we discuss how we evaluate the results of the exper-
iments.

3.1 Data set

For this experiment an annotated data set containing 17,000
Dutch reports is used. These reports originate from the
Dutch population screening on breast cancer, IBOB, and
were provided by A.J.T.Wanders. Each report contains some
textual data, and an annotation. Below both elements will
be described in more detail.

3.1.1 The reports

The unstructured text was created by radiologists through
a speech recognition application. The texts were recorded
in the hospitals located in the Netherlands and are therefore
written in Dutch. The text consists of 4 to 6 sentences, or
on average about 32 words. In these texts, the radiologists
report on the observation made in a mammography. Both
the primary observation as the secondary information such
as location, size and density are reported. An example of
the text in a report can be found below:

”Op CC-projectie links lateraal toenemende massa, 12 mm
diam. DD compositie/reeel Conclusie: De BI-RADS classi-
ficatie voor links is 0: Additionele beeldvorming geindiceerd.”

3.1.2 Annotations

The observations found in mammography are annotated.
In this dataset there are five different primary classes. Each
class is an indicator that suggest that an abnormality may
be found in the mammography. First these five different
indicators will be discussed shortly.

e Massa: A ‘Mass’ is a space occupying 3D lesion seen
in two different projections. If a potential mass is seen
in only a single projection it should be called an "asym-
metry’ until its three-dimensionality is confirmed.

e Calcificatie: Calcifications are found when an ac-
cumulation of calcium is seen on the mammography.
Sometimes the presence of calcifications is an indica-
tion for malignancy.

e Architectuurverstoring: The term architectural dis-
tortion is used, when the normal architecture is dis-
torted with no definite mass visible.



e Asymmetrie: Asymmetries are findings that repre-
sent unilateral deposits of fibroglandulair tissue not
conforming to the definition of a mass.

e Markering: The last indicator is mark. This is indi-
cator is only used in the Netherlands. It used to ask
attention for a specific location on the mammography,
without any specifications.

In Table 1 the main classifications and their code can be
found. A small part of the instances (399) in the data
set did not contain a classification. On recommendation
of A.J.T.Wanders these were left out. A challenging aspect
of this data set is that in 30.9% of the instances there is a
combination of two primary classes. In these instances, more
than one indicator was found in the mammography. These
combinations are coded by mentioning the code of the most
prominent classification first, followed by the number of the
second classification. For example if the radiologist observes
primarily massa (1MAS) but also calcificatie (2CAL), then
the final code will be 1IMAS2. It is important to note that
1MAS?2 is not the same as 2MAS]1. If only one abnormality
is found, then the code is followed by its own number (e.g.
IMAS1, 2CAL2 etc.).

Nr. | Name Code
1 Massa 1MAS
2 Calcificatie 2CAL
3 Architectuurverstoring | 3ARC
4 Asymmetrie 4ASY
5 Markering 5INT

Table 1: The primary classes with their codes

In 4.5% of the instances there are multiple classes. For
some instances this means that there is a third abnormality
found such as in the situation of (1IMAS2, IMAS3).

In Figure 1 the distribution of the primary abnormalities
can be found. As described in Section 1, one of the chal-
lenges in this study is the imbalance of the data set. It is
shown that the MAS and CAL class exceed the other classes
greatly.
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Figure 1: Frequency for the primary classes

In Figure 2 the distribution of all the combinations are
shown. Once again the combinations with either MAS or
CAL have a greater frequency than the others.
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Figure 2: Frequency for the primary classes in com-
bination with the secondary class

3.2 Data set partitioning

Before any experiment was conducted, the data set was
split into a training, validation and test set. The validation
set is used to experiment with different variables, while the
test is used to calculate the final results on. For the partition
size the ratio 80/10/10 was chosen. The sizes for both the
validation and test set are 1634 instances. The training set
got the remaining 11,941 instances. The instances for each
set were randomly divided. However, this selection process
has been performed multiple times to ensure that each set
contained enough instances of every class. In Figure 3 the
distribution of the instances over the different partitions can
be seen. For most classes however the validation and test
set frequencies are too low to be visualized.
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Figure 3: The distribution of all the instances over
the training, validation and test set.

3.3 The Bag-of-words model

The first step in a typical machine learning experiment
is to acquire features. A feature is an attribute that a ma-
chine learning algorithm may use to make its predictions.
For the feature selection task in this experiment the bag-of-
words(BOW) model is used. The features in a BOW model
represent whether a certain term is found in a document.
To further explain this concept, an example is given.

Let us take the following two pieces of text that represent
our entire data set:

1. After examining the results, patient seems to be stable.

2. After examining the results, patient may need addi-
tional testing.



The first step in the BOW model is to create a dictionary.
This dictionary contains unique terms that can be found in
the data set. Based on these two sentences, the dictionary
may contain the following words:

term # | term term # | term

1 after 8 be

2 examing 9 stable

3 the 10 may

4 results 11 need

5 patient 12 additional
6 seems 13 testing

7 to

Table 2: The dictionary after processing the two
example sentences.

In order to train and test a machine learning algorithm,
each instance needs to be converted to a vector. A vector can
be described as an one dimensional sequence of values. Each
value in the vector represents a feature. Vectors are built by
using the terms from the dictionary. To illustrate this, let us
take the the two sentences from our data set. The first term
from the dictionary is after. For both instances it is checked
whether the term is found in the text. If this is the case the
value of the feature is assigned 1, otherwise it is assigned
0. This step is done for every term in the dictionary. The
resulting vectors for the two example sentences can be seen
in 3

term # |1 (2 (3(4[5(6|7|8[9]10| 11| 12| 13
vector1 |1 |1 |11 (1|1]1 110 0 0 0
vector2 [ 1 |11 |1]|1[0]|O0[0|O0]1 1 1 1

Ju—

Table 3: The vectors for the two example sentences.

3.4 Preprocessing

Before features are selected, the textual data of each in-
stances first needs to be processed. The first step is to ap-
ply tokenization on the textual data. Tokenization is the
task of separating terms from each other in a character se-
quence. Primarily this means splitting characters based on
white spaces. This also includes separating punctuation that
may be next to a term. Lastly, any capital characters are
transformed to lowercase. For this task we use the tokenizer
from the NLTK library[13].

Then stop words can be removed from the set. Stop words
are the most common words in a language such as articles
(e.g. the, a). Most likely these words are used in instances of
every class, therefore they are not that informative. These
words can also have negative effects on the performance of
the classification by generalizing classes. Stop words are
removed by comparing them to a Dutch stop words data set
from the NLTK library[13]. In some approaches stop words
can be beneficial, which is explained in the next section.

Another step that helps to narrow down the search space
is lemmatization. Lemmatization is the task of converting
a word back to its root form. Let us take the following two
terms: car and cars. If these terms would be compared di-
rectly we would find that they do not match, even though
they point to the same object. We therefore chose to nor-
malize them so that they become equal. The Dutch snowball
stemmer of the NLTK library[13] was used for this step.

In table 4 each term removal step is shown together with
its effect. There are still terms that occur in almost every
instance but were not included in our stop word removal
data set. These terms can be seen as domain specific stop
words. Then a large part of the terms in the set have a low
frequency. These terms only occurred in a small part of the
instances and are therefor not that relevant for classification.
The next section discusses how these terms can be used as
features.

Process step Terms removed | Term count
Initial term count | n/a 6261
Stop term removal | 81 6180
Lemmatization 392 5788

Table 4: Terms removed in each step

3.5 Feature selection

In the feature selection step, features are selected based on
their relevance towards the prediction task. In the example
from the previous section, each unique term was selected to
be in the dictionary. However, not all features are equally
informative.

3.5.1 N-gram

As explained in subsection 3.3 the features in a BOW
model describe whether a certain term was found in the
data. Up until now we have only considered using a single
term in a feature, which is known as uni-gram. However it
is also possible to use the sequence of two or more terms.
Again consider the following sentence:

1. After examining the results, patient seems to be stable.

In table 5 three size for n are shown for this sentence.

Unigram Bigram Trigram
after after examining | after examining the
examining | examining the | examining the results
the the results the results patient

Table 5: Example of unigrams, bigrams and tri-
grams

Experiments will be conducted with all three sizes that are
shown. Two approaches will be discussed on how features
can be ranked and selected for the experiments.

3.5.2 Selection on frequency

The first approach selects terms based on their frequency
in the entire dataset. To select these terms, an upper border,
and a lower border will be defined. The purpose of the upper
border is to exclude domain specific stop words as explained
above. The purpose of the lower border is to exclude terms
whose frequency is too low for it to be relevant. Optimal
borders are selected by means of a grid search approach. The
experiments for both the upper and lower border are done
separately. This approach has some distinct drawbacks. It
only takes the frequency of the term into account, not its
distribution over the data set. A term with a high frequency
may very well be distributed over only a couple of classes,
which would make the term relevant for classification. The
next approach is considered to tackle this problem.



3.5.3 Selection on Tf-1df

The second approach is classification through the numer-
ical statistic tf-idf. Tf-idf stands for term frequency-inverse
document frequency and is often used in information re-
trieval[14]. Tf-idf aims to determine how important a certain
term is to a document, given its entire corpus[15]. The term
frequency states how often a term occurs in a document.
The inverse document frequency then states how many doc-
uments (documents in this specific case is the classes) in the
entire corpus contain that term. Tf and idf are then com-
bined for one score. A high tf-idf score is reached when the
term frequency for a specific document is high, while the
document frequency over the entire corpus is low. Let us
take for example the term ‘fibroadenoom’. It may be that
this specific term occurs more often in reports that are classi-
fied as Massa than others, thus its occurrence in an instance
will increase the chances that the document is classified as
Massa.

Two tf-idf approaches are considered. In the first ap-
proach, the tf for a term t and a document d is calculated
by using the frequency of t in d and dividing it by the max-
imum frequency of any t in document d. The idf of term t
in corpus C is calculated by the amount of documents in C
(N) divided by the count of term t in a document d. Finally,
tf-idf is calculated by multiplying tf by idf. The equations
are shown in Figure 3.

f(t,d)
mazx{f(t',d)}

idf (t,C) = log ({chNitcd})

tf —idf(t,d, D) = tf(t,d) - idf (¢, D)

tf(t,d) =

Figure 4: The equation for tf-idf where tf is calcu-
lated for each class.

In the second approach, tf is adjusted. In the first ap-
proach, we calculate tf for each document individually, and
take the highest score. Now tf is calculated over the entire
corpus.The equations are shown in Figure 4.

f(t,0)

00 = S0

Figure 5: The equation for tf-idf where tf is calcu-
lated over the entire corpus

3.6 Machine learning algorithm

A classifier that is often used in combination with the
bag-of-words model and textual data is the Support Vector
Machines(SVM)[9]. The SVM places the training data with
the different classes into a high dimensional space. In this
space, the SVM then attempts to separate the data points
from the different classes by constructing a hyper plane. Af-
ter the training data, new data is presented to the algorithm
to measure its performance.

3.7 The classification task

As discussed in Section 3.1, some instances have a primary
and a secondary class. In total the dataset contains thirteen
unique primary and secondary class combinations, including
the classes where the primary and secondary class are the
same. In this paper three different classification approaches
are explored.

3.7.1 One round classification

In the first approach every instance is classified only once.
Each unique combination of classes will become its own sep-
arate class. The classifier can thus choose between thirteen
different classes for each instance. The approach is simple
to execute but does have a drawback. The unique combina-~
tions only have a few instances in the training set, making
them difficult to classify.

3.7.2  Two round classification

In the second approach, there are two classification rounds.
In the first classification round, the classifier will determine
for each instance its primary class. Then in the second round
the secondary class is classified. An advantage of this ap-
proach is that the number of classes on which the classifier
is trained is reduced to only five. Each class thus has more
instances for training, which may help the minority classes.
A drawback however is that misclassifications made in the
first round are permanent, and can not be fixed in the second
round.

3.7.3  One round classification using probability es-
timates

In the last approach the probability estimates of the clas-
sifier are used. Classifiers such as the SVM return per class
scores[18]. In this approach, the classifier is trained on the
five primary classes. The primary and secondary classes will
then be chosen by taking the first and second highest scores
from the probability estimates. Not all instances require
a second class however (e.g. 1MASI1, 2MAS2). Therefore
needs to be set to determine if the second highest score is
considered.

This approach deals well with the drawbacks of the pre-
vious approaches. There is only one classification round,
and the classifier is trained on only five classes. It should
be noted however that this approach assumes that a class
is described with the same terms in a primary role as in a
secondary role. We may for example find that calcification
in 2CAL2 is described with different terms than in 1IMAS2.
In this case, this approach will not perform as well.

3.8 Class imbalance

As shown in section 3.1 the data set used in this study
is unbalanced. Of all instances, 47.5% is of the 1IMAS1
class and 24.5% is of the 2CAL2 class. The remaining in-
stances are distributed over the 13 other classes. The prob-
lem with unbalanced datasets is that machine learning al-
gorithms tend to only understand the majority class. The
algorithm will therefore predict most of the instances to be of
the majority class. In this paper, three different approaches
will be considered to increase performance on this data set.

3.8.1 Undersampling

A common approach to imbalanced data sets is undersam-
pling[17]. With under sampling, instances from the majority
class are removed from the training set. Removing these in-



stances can be beneficial because the bias that the algorithm
will have for the majority class may reduce. A drawback of
this method however is that a part of the data set will not
be used. This may be especially harmful for data sets that
are already small, such as the one described in this paper.
The undersampling experiments will be primarily focused
on the 1IMASI1 class. A percentage of instances from this
class will be removed randomly. The percentages removed
will initially be 25, 50 and 75%.

3.8.2  The C parameter

One of the parameters for the SVM is C. The C parame-
ter stands for the amount of misclassifications that the SVM
is allowed to make when constructing the hyper plane [12].
With a high value for C, the SVM will try to avoid making
misclassifications on the data set, which may lead to over fit-
ting. It is also possible adjust the C parameter for a specific
class. Experiments are done by boosting the C parameter
for the minority classes.

3.8.3 Majority class versus the rest

Finally, we consider a majority class versus the rest ap-
proach. In this approach, all the instances that are not of
the majority class are grouped together. In the first round
of classification it will be determined whether an instance is
of the majority class or not. Since 47.5% of the instances are
of the majority class, there are almost an even amount of
instances for each class. In the second classification round,
every instance that was not classified as the majority class
will be classified to one of the remaining classes.

3.9 Multi-classification

As described in Section 3, a small part of the instances
contain multiple annotations. It was decided to leave these
instances out of the test set. This choice was made because
these instances make the classification process more com-
plex, while there is only a relatively small number of them.
It would still be interesting however, to see how well a ma-
chine is able to classify these instances. Therefore, two multi
classification experiments will be conducted, taking the best
parameters of the previous experiments into account.

To run the experiments, the data set will be partitioned

again into a training, validation and test set, with the 80/10/10

ratio. Each of these partitions will once again include all
thirteen of the active classes. This time however, instances
with multiple annotations will not be removed.

From this dataset, two experiments will be conducted. In
the first experiment, all the instances with multiple annota-
tions will be removed from the training set. Then thirteen
classifiers (one for each class) will be trained on this training
set. These classifiers will be trained on whether an instance
contains that class or not. Then in the prediction phase,
each instance will receive a prediction from all the thirteen
classifiers.

In the second experiment, instances with multiple annota-
tions are not removed from the training set. Instead, these
instances will be copied for the amount of annotations they
hold. Take for example an instance with the annotations
1MAS1 and 1IMAS2. The dataset does not specify which
annotation is more important, so they should be treated
equally. This is done by creating two instances out of this
one instance. One instances will have the annotation 1MAS1
and the other will have the annotation 1MAS2, while both

instances will have the same data.

3.10 Evaluation

Evaluation of the experiments will be done by analyzing
the predictions made by the machine learning algorithm.
Primarily the precision and recall measurements will be used.
To calculate these measures, the predicted labels are com-
pared to the actual labels. Precision and recall is calcu-
lated for each class separately. When comparing these la-
bels, there are four different combinations possible. Below
an example is given with the 1IMASI1 class.

e True positive(tp): Both the prediction as the actual
label are 1IMAS1

e False positive(fp): The prediction is 1IMAS1 while the
actual label is another class.

e False negative(fn): The prediction is another class while
the actual label is 1IMASI1.

e True negative(tn): Both the prediction as the actual
label are another class.

Recall is the fraction of instances classified correctly out
of all instances of that class. Precision is the fraction of in-
stances classified correctly out of all positive classifications.

Precision(p) = tpiipfp
tp
Recall(p) = ————
coali(p) =

Precision and recall can be combined using the f1-measure,
as defined below.

Precision(p) - Recall(p)

F1- =2
measure(p) Precision(p) + Recall(p)

The Fl-measure is calculated for each class separately. To
combine the Fl-measures of the different classes, both mi-
cro and macro averaged Fl-measures are used. The micro
averaged Fl-measure takes the frequency of each class into
account. Classes with more instances (such as the 1IMAS1
class) have a higher influence on the final score. This mea-
sure is primarily used to get an indication of the overall per-
formance of the system. In the macro averaged F1-measure,
each class is weighted equally. This measure can indicate if
classes other than the majority class are performing better.

Finally, the multi classification task also need to be evalu-
ated. Because instances can have more than one label, preci-
sion and recall as described earlier can not be implemented.
Therefore an alternative precision and recall is used, that is
calculated over all the results, instead for each class. Let us
take all the actual labels T and all the predicted labels P.
Precision and recall can then be calculated as:

. TN P|
Precision(p) = —p
Recall(p) = 7”T;P”

The Fl-measure then remains the same.



4. RESULTS

In this section, the results of the experiments discussed in
section 3 will be shown.

4.1 Majority baseline

In Table 6 the majority baseline is shown. The baseline is
produced by assigning to each instance of the test set the ma-
jority class (IMAS1). As shown in the Table, the majority
class therefore has a optimal recall, but a relatively low pre-
cision. Both the micro and macro average fl-measures are
calculated as well. Primarily these measures will be used to
compare the other experiments to the baseline performance.

Class Precision | Recall | F1 Frequency
1IMAST1 | 0.457 1.0 0.627 | 746
1MAS2 | 0.0 0.0 0.0 106
1MAS3 | 0.0 0.0 0.0 54
1MAS4 | 0.0 0.0 0.0 19
1MAS5 | 0.0 0.0 0.0 42
2CAL1 | 0.0 0.0 0.0 26
2CAL2 | 0.0 0.0 0.0 454
3ARC1 | 0.0 0.0 0.0 115
3ARC2 | 0.0 0.0 0.0 19
4ASY1 | 0.0 0.0 0.0 39
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.0 0.0 0.0 11
Micro averaged F1: 0.457

Macro averaged F1: 0.052

Table 6: The majority baseline by assigning 1IMAS1
to each instance of the test set.

Class Precision | Recall | F1 Frequency
1IMASI | 0.632 1.0 0.775 | 746
1MAS2 | 0.0 0.0 0.0 106
1MAS3 | 0.0 0.0 0.0 54
1MAS4 | 0.0 0.0 0.0 19
1MAS5 | 0.0 0.0 0.0 42
2CAL1 | 0.0 0.0 0.0 26
2CAL2 | 1.0 1.0 1.0 454
3ARC1 | 0.0 0.0 0.0 115
3ARC2 | 0.0 0.0 0.0 19
4ASY1 | 0.0 0.0 0.0 39
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.0 0.0 0.0 11
Micro averaged F1: 0.734

Macro averaged F1: 0.15

Table 7: Baseline performance where the two most
frequent classes are always predicted correctly for
the single label data

It could be argued however that the majority baseline
still is not sufficient. The idea behind the majority baseline
is that a under performing classifier would automatically
assign each instance to the majority class. However, the
1MAST1 class is not the only class with a significant bigger
number of instances. If we were to remove all the instances
with 1IMAS1 from the data set, then 44.8% of the remaining
instances (4,142 out of 9,273) would be of the 2CAL2 class.
Thus there may actually be two majority classes. Therefore

an alternative baseline was constructed. In this baseline the
1MAS1 and the 2CAL2 instances are always predicted cor-
rectly. All the other instances are assigned the IMAS1 class.
The results of this baseline can be found in Table 7

4.2 Selection on frequency

In Table 8 the feature selection experiments based on the
frequency of a term in the corpus are shown. In the first
column the minimal frequency that a term needs to occur
in the dataset is listed. In the second column the amount of
features is listed. It is shown that as the term frequency min-
imum gets higher, the amount of features decreases. In the
last two columns the micro and macro average F1-measures
are shown. Both the micro and macro average seem to be
the highest when terms with a relatively low frequency are
used.

Minimal freq. | # Features | Micro avg. | Macro avg.
10 940 0.881 0.594
20 667 0.875 0.577
30 545 0.871 0.578
40 448 0.878 0.589
50 404 0.873 0.572
60 357 0.867 0.564
70 328 0.873 0.572
80 303 0.872 0.551
90 282 0.873 0.554
100 269 0.871 0.56
110 258 0.874 0.571
120 247 0.877 0.58
130 233 0.876 0.56
140 222 0.873 0.561
150 213 0.873 0.557
200 181 0.874 0.543
250 162 0.876 0.564
300 140 0.863 0.546
350 127 0.859 0.51
400 114 0.855 0.498
450 102 0.859 0.517
500 99 0.858 0.517

Table 8: Feature selection based on the minimal fre-
quency of a term

In Table 9 the same experiment is performed but then
for the maximal frequency of a term. The best perform-
ing minimal frequency (10) is used as a lower boundary, to
avoid having too many features. It is shown that removing
the most common features negatively impacts the micro and
macro average scores.

Maximum freq. | # Features | Micro avg. | Macro avg.
1000 886 0.788 0.411
800 877 0.782 0.411
600 858 0.741 0.368
400 827 0.716 0.348
200 759 0.664 0.269

Table 9: Feature selection based on the maximum
frequency of a term

4.3 Selection on Tf-idf



4.3.1 Tf-idf calculated over the corpus

In Table 10 the top ten terms are shown ranked by tf-idf
over the entire corpus. Tf is here the frequency of a term t
in the corpus, and df the amount of classes that contains t.
Most terms selected by this approach have a relatively high
term and document frequency. None of the terms however
are present in every class.

Rank | Term tf df
1 klassiek 3128 | 11
2 birad 2315 | 11
3 verdacht 4649 | 12
4 afgrens 883 |9

5 groepj 1003 | 10
6 scherp 1538 | 11
7 gebied 1494 | 11
8 calcificaties 1480 | 11
9 ander 2936 | 12
10 gladbegrensd | 469 | 8

Table 10: The top ten terms ranked with tf-idf cal-
culated over the entire corpus

In Table 11 the results of the experiments using these
terms are shown. In the first column, the amount of terms
used is shown. These terms range from rank 1 till rank k.
The micro average F1 peaks at 200 features whereas the
macro average F1 peaks at 1000 features.

Top k | Micro avg. | Macro avg.
100 0.849 0.452
200 0.868 0.517
300 0.864 0.537
400 0.865 0.562
500 0.867 0.562
600 0.864 0.572
700 0.861 0.569
800 0.857 0.568
900 0.858 0.569
1000 | 0.859 0.575

Table 11: Experiments with the top k terms with
tf-idf calculated over the entire corpus

4.3.2  Tf-idf calculated for each document

In Table 12 the top ten terms are shown ranked by tf-idf
over each document. Tf is here the frequency of a term t in
a class ¢, df remains the same. The tf-idf for a term t is then
calculated for each class where the highest score is used.

Rank | Term class tf

1 zer 1MAS4 | 155
2 klassiek 2CAL2 | 1755
3 heterog 2CAL1 | 16
4 calcificaties 2CAL1 | 110
5 verdacht 1MAS4 | 206
6 groepj 2CAL2 | 879
7 biradsclassificatie | 5INT3 | 76
8 zie 5INT3 | 76
9 brief 5INT3 | 75
10 mic 3ARC2 | 8

Table 12: The top ten terms ranked with tf-idf cal-
culated for each document

In Table 13 the results of the experiments using these
terms are shown. The results for this tf-idf approach seems
to slightly outperform the other approach.

Top k | Micro avg. | Macro avg.
100 0.865 0.524
200 0.875 0.544
300 0.867 0.519
400 0.865 0.552
500 0.866 0.57
600 0.86 0.566
700 0.86 0.562
800 0.861 0.56
900 0.859 0.56
1000 | 0.86 0.569

Table 13: Experiments with the top k terms with
tf-idf calculated for each document

44 N-gram

Previously only n-grams of size 1, also called uni-grams
were considered. In Table 14 the n-gram experiments are
shown with a n of size 2, also called bi-grams. We started
with a minimal frequency of 50 to limit the amount of fea-
tures used. In both micro and macro average, bi-grams
seems to perform worst than uni-grams.

Minimal freq. | # Features | Micro avg. | Macro avg.
50 828 0.833 0.498
100 460 0.831 0.496
150 337 0.816 0.445
200 253 0.816 0.409
250 197 0.807 0.392

Table 14: Experiments with a n-gram of size 2

In Table 15 the n-gram experiments are shown with n
of size 3, also called tri-grams. In both micro and macro
average, bi-grams seems to perform worst than uni-grams
and bi-grams.



Minimal freq. | # Features | Micro avg. | Macro avg. Removed % | Size training set | Micro avg. | Macro avg.
50 708 0.782 0.413 0 11941 0.881 0.594
100 344 0.762 0.387 10 11361 0.876 0.592
150 228 0.741 0.29 20 10781 0.879 0.605
200 147 0.701 0.235 30 10201 0.876 0.591
250 111 0.696 0.212 40 9621 0.877 0.594
50 9041 0.871 0.606
Table 15: Experiments with a n-gram of size 3 60 8461 0.869 0.6
70 7881 0.859 0.593
4.5 Classification approaches 80 7301 0.843 0.577
For the remaining experiments, the best performing fea- 90 6721 0.822 0.582

tures were chosen. These are only uni-gram features with a
minimal frequency of 10 and no maximal frequency.

4.5.1 Two round classification

In the previous experiments an one round classification
approach was used. In Section 3.7 two other approaches
were discussed. In Table 16 the two round classification is
shown.

Class Precision | Recall | F1 Frequency
1MAS1 | 0.899 0.969 | 0.933 | 784
1MAS2 | 0.706 0.724 | 0.715 | 123
1MAS3 | 0.634 0.553 | 0.591 | 47
1MAS4 | 0.667 0.4 0.5 15
1MAS5 | 0.765 0.265 | 0.394 | 49
2CAL1 | 0.182 0.105 | 0.133 | 19
2CAL2 | 0.936 0.925 | 0.93 | 412
3ARC1 | 0.807 0.739 | 0.772 | 119
3ARC2 | 0.692 0.45 0.545 | 20
4ASY1 | 0.735 0.658 | 0.694 | 38
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.0 0.0 0.0 6
Micro averaged F1: 0.861

Macro averaged F1: 0.529

Table 16: Two round classification

4.5.2 One round classification using probability es-
timates

The second approach is an one round approach using the
probability estimators of the SVM. The SVM is trained on
only the five primary classes. Then the probabilities for each
class were used to determine what the (possible) secondary
class would be. Before the experiment, the effectiveness of
this approach was manually checked. In the test set there
are 438 instances where the primary class is different from
the secondary class (e.g. 1MAS2). It was found that by
using the probability estimates, only in 138 of the instances
(32.2%) the secondary class could be found on the second
highest probability. From these results was concluded that
no further experiments were necessary.

4.6 Class imbalance

4.6.1 Undersampling

In Table 17 the undersample experiments are shown. A
percentage of the majority class (1IMAS1) is removed from
the training set. The micro average decreases slowly as the
majority class is reduced. The macro average however seems
relatively stable. This can also be seen in Figure 6 where
the experiments with 0% and 90% removed are shown.
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Table 17: Undersampling on the 1M AS1 class.
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Figure 6: The F1 measure for each class before and
after the undersampling.

4.6.2 The C parameter

In Table 18 an experiment is shown where the parameter C
(as discussed in Section 3.8.2) is equal for every class. This
means that each class can make an even amount of miss
classifications when constructing the hyperplane. In Table
18 an experiment is shown where the parameter C is reduced
to 0.1 for the majority class IMAS1. The purpose of this
reduction is to reduce the range under which instances will
be classified as IMAS1. This effect is shown in the reduction
in recall of the 1IMAS1 class. The micro averaged F1 of all
the classes is reduced, while the macro averaged F1 stays
the same.

Class Precision | Recall | F1 Frequency
1MAST | 0.934 0.957 | 0.945 | 784
1MAS2 | 0.775 0.813 | 0.794 | 123
1MAS3 | 0.6 0.702 | 0.647 | 47
1MAS4 | 0.667 0.667 | 0.667 | 15
1MAS5 | 0.524 0.449 | 0.484 | 49
2CAL1 | 0.444 0.211 0.286 | 19
2CAL2 | 0.945 0.951 0.948 | 412
3ARC1 | 0.826 0.756 | 0.789 | 119
3ARC2 | 0.786 0.55 0.647 | 20
4ASY1 | 0.703 0.684 | 0.693 | 38
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.167 0.167 | 0.167 | 6
Micro averaged F1: 0.881

Macro averaged F1: 0.594

Table 18: Experiment where C is equal to 1.0 for
each class.




Class Precision | Recall | F1 Frequency
1MAS1 | 0.967 0.885 | 0.924 | 784
1MAS2 | 0.601 0.846 | 0.703 | 123
1MAS3 | 0.571 0.766 | 0.654 | 47
1MAS4 | 0.714 0.667 | 0.69 | 15
1MAS5 | 0.44 0.449 | 0.444 | 49
2CAL1 | 0.444 0.211 0.286 | 19
2CAL2 | 0.94 0.954 | 0.947 | 412
3ARC1 | 0.804 0.756 | 0.779 | 119
3ARC2 | 0.786 0.55 0.647 | 20
4ASY1 | 0.638 0.789 | 0.706 | 38
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.125 0.333 | 0.182 | 6
Micro averaged F1: 0.854

Macro averaged F1: 0.593

Table 19: Experiment where C is reduced to 0.1 for
the majority class 1M AS1.

4.6.3 Majority class versus the rest

The last approach in this paper to deal with the imbalance
of the dataset is to group multiple smaller classes together.
For this experiment, every instance that was not IMAS1 was
annotated as ’Other’. Then in the first classification round,
each instance is classified as either 1IMAS1 or Other. The
results of this round are shown in Table 20

Class Precision | Recall | F1 Frequency
1IMAST | 0.942 0.95 0.946 | 784
Other 0.954 0.946 | 0.95 | 850

Micro averaged F1: 0.948
Macro averaged F1: 0.948

Table 20: First classification round. All classes ex-
cept for 1IMAS1 are grouped together under the
class Other

In the second round of classification, only the instances
that were previously classified as Other are considered. These
will now be classified into the remaining 12 classes. The re-
sults of this round are shown in Table 21

Class Precision | Recall | F1 Frequency
1MAS2 | 0.708 0.898 | 0.792 | 108
1MAS3 | 0.632 0.9 0.743 | 40
1MAS4 | 0.714 0.667 | 0.69 | 15
1MAS5 | 0.5 0.489 | 0.494 | 45
2CAL1 | 0.444 0.211 | 0.286 | 19
2CAL2 | 0.942 0.954 | 0.948 | 411
3ARCI | 0.818 0.804 | 0.811 | 112
3ARC2 | 0.733 0.55 0.628 | 20
4ASY1 | 0.667 0.828 | 0.739 | 29
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.2 0.25 0.222 | 4
Micro averaged F1: 0.834

Macro averaged F1: 0.587

Table 21: Second classification round. Every in-
stance classified as Other is now being classified into
one specific class.

Finally the combined results of these two rounds are shown

in Table 22
Class Precision | Recall | F1 Frequency
1MAST | 0.942 0.95 0.946 | 784
1MAS2 | 0.708 0.789 | 0.746 | 123
1MAS3 | 0.632 0.766 | 0.693 | 47
1MAS4 | 0.714 0.667 | 0.69 | 15
1MAS5 | 0.5 0.449 | 0.473 | 49
2CAL1 | 0.444 0.211 0.286 | 19
2CAL2 | 0.942 0.951 0.946 | 412
3ARC1 | 0.818 0.756 | 0.786 | 119
3ARC2 | 0.733 0.55 0.628 | 20
4ASY1 | 0.667 0.632 | 0.649 | 38
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.2 0.167 | 0.182
Micro averaged F1: 0.876
Macro averaged F1: 0.591

Table 22: The results of round 1 and round 2 com-
bined.

4.7 Multi-classification

The multi classification task is done by using the best
performing features from the previous experiments into ac-
count.

Experiment Precision | Recall | F1-measure
With double instances 0.887 0.790 | 0.835
Without double instances | 0.877 0.795 | 0.834

Table 23: Two multi classification experiments. One
with and one without double instances in the train-
ing set

4.8 Final experiment

These final experiments use the best performing results
from previous experiments. The feature selection is done on
frequency with a minimal frequency of 10 and no maximum
frequency. For the features themselves, only uni-grams are
used. The classification is done in only one round, where the
classifier was trained on all the thirteen classes. The results
of the final single label classification can be found in Table
24.

Class Precision | Recall | F1 Frequency
1MAS1 | 0.936 0.962 | 0.949 | 770
1MAS2 | 0.818 0.857 | 0.837 | 105
1MAS3 | 0.635 0.784 | 0.702 | 51
1MAS4 | 0.719 0.793 | 0.754 | 29
1IMAS5 | 0.721 0.705 | 0.713 | 44
2CAL1 | 0.833 0.385 | 0.527 | 26
2CAL2 | 0.933 0.935 | 0.934 | 429
3ARC1 | 0.857 0.788 | 0.821 | 99
3ARC2 | 0.688 0.579 | 0.629 | 19
4ASY1 | 0.917 0.688 | 0.786 | 48
5INT2 | 0.0 0.0 0.0 1
5INT3 | 0.667 0.545 | 0.6 11
Micro averaged F1: 0.896

Macro averaged F1: 0.696

Table 24: The final experiment for the single label
instances



The multi label set was performed with the same variables
as the single label set. The results of the final multi label
classification can be found in Table 25

F1-Measure
Majority baseline | 0,490
Alt. baseline 0,733
Final experiment | 0,854

Table 25: The final experiment for the multi label
instances

5. DISCUSSION

The main purpose of this paper is to determine how well
a machine is able to classify mammography reports. This is
not a new domain. In section 2, similar studies have already
been discussed.

5.1 Data set

To determine the performance of an experiment, it can be
compared to the results of other studies. This turned out
to be challenging. The reason for this is primarily because
the data set is unique on multiple dimensions. First of all
the size of the data set is relatively small. Even though
there are 17,000 reports, each reports only contains about
3 to 6 sentences of text. Secondly, because the data set is
in Dutch, no clinical lexicon could be used. This put a lim-
itation on the use of more intelligent features. Finally one
of the biggest differences with other studies are the anno-
tations. Annotations can be combinations between primary
and secondary classes, therefore, the amount of classes be-
comes fairly large. All of these differences made a compari-
son with another study too difficult.

5.2 Feature selection

Mainly the features used in this paper were either uni-
grams, bi-grams or tri-grams. These features were then se-
lected based on either their frequency in the entire corpus,
or their tf-idf score. A baseline experiment was conducted
where no selection was done, and simply each term became
a feature.

The selection on frequency approach performed the best,
but did not perform better than the baseline. The only
benefit of this approach was that it reduced the training time
of the algorithm greatly. Both tf-idf approaches performed
the worst. A possible explanation of this result could be the
low frequency of some of the classes. Take for example the
term 'bi-rad’. Overall it has one of the highest frequencies in
the corpus. It does however not appear in every class (11 out
of 13). Because of this, tf-idf classifies this as an useful term.
The reason why it does not appear in each class is because
some classes do not contain enough instances. Essentially
these classes skew the document frequency metric.

Now lets discuss the features themselves. The results from
the N-gram experiments show that higher values for N have
a negative impact on the performance. There are however
some design choices that need to be discussed with these
results. First of all, the selection of features on the bigger
n-grams was done using the frequency of the features. No
experiments with tf-idf were performed, since the algorithm
did not seem to perform well. Secondly, the n-gram exper-
iments were done separately from each other. This means
that the bi-gram experiment, did not include any uni-grams.

It could be argued that n-grams perform the best when the
top performing features of the different sizes combined work
the best. However, this would require a working feature
selection approach.

5.3 Imbalance and size of the dataset

Three approaches have been considered to work around
the imbalance problem. First we tried to remove instances
from the majority class, lowering the imbalance. Then we
tried to tell the classifier to make the majority class less im-
portant, by lowering the C value. Lastly we tried to group up
all the smaller classes against the majority class. In all three
approaches, the overall performance did not improve. Be-
cause all these approaches did not improve the performance,
perhaps the imbalance of the classes is not a problem. It
could be that it is the size of the data or the frequency of
some classes.

There are two arguments that support this line of think-
ing. The first argument is the relative small size of some of
the classes. In Section 3.2 we discuss how the two smallest
classes were removed because they contained less than three
instances. The number three was chosen, because we wanted
each partition (training, validation, test) to have at least
one instance of each class. However some of the remaining
classes are still relatively small (with two instances having
< 20 instances). The results suggest that the weak results
for these classes was not because of the majority class, it
was because the classifier did not have enough instances to
train on.

This suggestion that more data could increase the perfor-
mance is also shown in Figure 7. Here multiple experiments
are shown where only a part of the data set is used. Both
the micro and macro average show growth when more data
is added to the training set. Especially the growth of the
macro average is important here, since it proves that it is not
just the bigger classes (IMAS1, 2CAL2) that are growing.
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Figure 7: The micro and macro average when train-
ing data is increased.

5.4 Evaluation

For evaluation, the metrics recall and precision are used.
These metrics are commonly used in document classification,
as they offer a better insight in the results than just the
accuracy. To combine precision and recall to one value, the
Fl-measure was used. Primarily it was chosen to use the
F1 measure because it was used in other studies reported in
Section 2.

The domain of the classification is important however.



Avoiding misclassifications is important in the medical do-
main. It may therefore not be justified to have recall and
precision weighted equally. Precision could be weighted dif-
ferently, to punish miss classifications harder. The F0.5 mea-
sure would be a good alternative since it puts more emphasis
on precision.

5.5 Final results

In Section 4.8 the final results for both the single and
the multi label classification are shown. As there are no
other studies to compare these results with, we primarily use
the baseline performance to interpret them. The majority
baseline was chosen because almost 50% of the instances in
the data set are of the majority class.

In Figure 8 the micro and macro average F1 of the single
label classification is compared with both baselines. Here it
is shown how poorly the majority baseline performed com-
pared to the actual results. Therefore we also created a
stronger baseline, where the two majority classes (1IMAS1
and 2CAL2) are always predicted correctly. The micro av-
erage baseline performance is increased from 0.457 to 0.734.
However the final results from this experiment are still ex-
ceeding the baseline performance (0.896 from the final ex-
periment against 0.734 from the baseline). As only two out
of the thirteen classes are classified correctly, the macro av-
erage Fl-measure is not informative.

In Table 25 it is shown how also the final multi label clas-
sification experiment is outperforming both baselines.
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Figure 8: The micro and macro average F1 for the
single label classification compared to the baseline

6. CONCLUSION

The main goal of this study was to research whether a ma-
chine could be trained to automatically classify unstructured
mammography reports. Both the single label as the multi la-
bel classification experiments have shown promising results.
Furthermore, several indicators have been found that sug-
gest that performance could be improved by increasing the
amount of training data. This may especially be useful for
classes with the least amount of instances in the current data
set.

7. FUTURE WORK

Feature selection is an important task in the classification
process. In this paper, multiple approaches have been con-
sidered to select informative features. However none of these
approaches performed significantly better than the baseline.

Therefore, more research could be done in alternative fea-
ture selection approaches. Furthermore, only N-gram fea-
tures are considered in this paper. Therefore other types of
features could also be considered.

The results from this paper may be used by A.J.T.Wanders
for a project proposal. This project is concerned with the
application of the techniques described in this paper within
hospitals. Additionally the results may also be used as an
example to start similar experiments in other medical do-
mains.

8. REFERENCES

(1] A.J.T.Wanders. 2016. Retrieved 17 July, 2016 from
http://www.mammascreening.nl/

[2] Zuccon, G., Wagholikar, A. S., Nguyen, A. N., Butt, L.,
Chu, K., Martin, S., & Greenslade, J. (2013).
Automatic classification of free-text radiology reports
to identify limb fractures using machine learning and
the snomed ct ontology. AMIA Summits on
Translational Science Proceedings, 2013, 300.

[3] Cotik, V., Filippo, D., & Castano, J. (2014). An
Approach for Automatic Classification of Radiology
Reports in Spanish. Studies in health technology and
informatics, 216, 634-638.

[4] Percha, B., Nassif, H., Lipson, J., Burnside, E., &
Rubin, D. (2012). Automatic classification of
mammography reports by BI-RADS breast tissue
composition class. Journal of the American Medical
Informatics Association, 19(5), 913-916.

[5] Liu, Z., Lv, X., Liu, K., & Shi, S. (2010, March). Study
on SVM compared with the other text classification
methods. In Education Technology and Computer
Science (ETCS), 2010 Second International Workshop
on (Vol. 1, pp. 219-222). IEEE.

[6] Ullman, J. D., Leskovec, J., & Rajaraman, A. (2011).
Mining of Massive Datasets.

[7] Yun-tao, Z., Ling, G., & Yong-cheng, W. (2005). An
improved TF-IDF approach for text classification.
Journal of Zhejiang University Science A, 6(1), 49-55.

[8] Pandit, S. (2008). On a robust document classification
approach using TF-IDF scheme with learned,
context-sensitive semantics.

[9] Joachims, T. (2002). Learning to classify text using
support vector machines: Methods, theory and
algorithms (p. 205). Kluwer Academic Publishers.

[10] Joachims, T. (1998). Text categorization with support
vector machines: Learning with many relevant features
(pp. 137-142). Springer Berlin Heidelberg.

[11] Drummond, C., & Holte, R. C. (2003, August). C4. 5,
class imbalance, and cost sensitivity: why
under-sampling beats over-sampling. In Workshop on
learning from imbalanced datasets II (Vol. 11).

[12] Veropoulos, K., Campbell, C., & Cristianini, N.
(1999). Controlling the sensitivity of sup- port vector
machines. Proceedings of the International Joint
Conference on Al, 55-60.

[13] S. Bird, E. Klein, E. Loper Natural Language
Processing with Python Analyzing Text with the
Natural Language Toolkit

[14] Manning, C. D., Raghavan, P., & Schiitze, H. (2008).
Introduction to information retrieval (Vol. 1, p. 496).
Cambridge: Cambridge university press.



[15] Rajaraman, A., & Ullman, J. D. (2012). Mining of
massive datasets (Vol. 77). Cambridge: Cambridge
University Press.

[16] Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R.
(2003, August). Tackling the poor assumptions of naive
bayes text classifiers. In ICML (Vol. 3, pp. 616-623).

[17] Liu, X. Y., Wu, J., & Zhou, Z. H. (2009). Exploratory
undersampling for class-imbalance learning. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 39(2), 539-550.

[18] Wu, T. F., Lin, C. J., & Weng, R. C. (2004).
Probability estimates for multi-class classification by
pairwise coupling. Journal of Machine Learning
Research, 5(Aug), 975-1005.



